# **ARIC Manuscript Proposal # 3215**

| PC Reviewed: 8/14/18 | <b>Status:</b> | <b>Priority: 2</b> |
|----------------------|----------------|--------------------|
| SC Reviewed:         | <b>Status:</b> | Priority:          |

**1.a. Full Title**: Traditional and Novel Risk Factors for Peripheral Neuropathy in the ARIC Study

b. Abbreviated Title (Length 26 characters): Risk factors for peripheral neuropathy

## 2. Writing Group:

Writing group members: Caitlin W. Hicks, Dan Wang, Natalie Daya, B. Gwen Windham, Christie M. Ballantyne, Kunihiro Matsushita; Elizabeth Selvin; others welcome

I, the first author, confirm that all the coauthors have given their approval for this manuscript proposal. \_CWH\_\_ [please confirm with your initials electronically or in writing]

First author: Caitlin Hicks

Address: Department of Surgery

Johns Hopkins Hospital

600 N. Wolfe Street, Halsted 668

Baltimore, MD 21287

Phone: (617) 312-0187 Fax: (410) 614-2079

E-mail: chicks11@jhmi.edu

**ARIC** author to be contacted if there are questions about the manuscript and the first author does not respond or cannot be located (this must be an ARIC investigator).

Name: Elizabeth Selvin

Address: Department of Epidemiology

Johns Hopkins Bloomberg School of Public Health

2024 E. Monument St., Suite 2-600

Baltimore, MD 21287

Phone: (410) 614-3752 Fax: (410) 367-2384

E-mail: eselvin@jhu.edu

**3. Timeline**: Data to be used in this proposal are available. Analyses and manuscript preparation will be performed over the next 12 months.

#### 4. Rationale:

Peripheral neuropathy (PN) is estimated to affect between 2% and 7% of the general population  $^{1,2}$ . The prevalence increases substantially in older adults (>55 years of age), and among patients with diabetes mellitus  $^1$ . Based on data from the Pittsburg Epidemiology of Diabetes Complications Study, the prevalence of PN is 34% among patients with type I insulindependent diabetes in general, and 58% if  $\geq$ 30 years of age  $^3$ .

Peripheral neuropathy is one of the most common neurologic conditions encountered by physicians in the outpatient setting <sup>4</sup>. It is usually symmetric and starts distally, gradually spreading in a stocking-like distribution up the feet <sup>5</sup>. The presentation occurs on a spectrum; some patients are asymptomatic, some patients complain of painful neuropathy, and others may present with foot ulcers requiring inpatient hospital admission and multiple costly procedures to promote healing <sup>6</sup>. Symptomatic PN has been shown to significantly impact health status, function, and work productivity, and associated annual average direct costs are estimated to be \$8,055 per patient <sup>7</sup>. Within the diabetic population, the costs are even higher, with annual direct medical costs estimated to be between \$12,492 to \$30,755 based on the severity of disease <sup>8</sup>.

Unfortunately, therapeutic options for PN are limited. Once present, PN is not reversible and, apart from maintaining strict glycemic control and providing supportive treatment of patient symptoms, there are no effective treatment strategies for the disease <sup>5,9</sup>. As a result, the mainstay of PN management is preventative. Patients considered to be at-risk for PN are generally recommended to control standard cardiovascular risk factors and practice lifestyle modifications such as wearing closed-toes shoes, clean socks, and performing regular foot examinations to check for ulcer formation <sup>4</sup>. Among diabetic patients, intensive glucose control is also recommended.

Due to the cost associated with PN and its complications, preventive care is necessary. As such, there has been a recent interest in research focused on identifying patients who may be at the highest risk for PN <sup>10</sup>. Duration of diabetes, independent of diabetes control, has been shown to be associated with both the development and severity of disease <sup>11</sup>. In a cross-sectional study of 563 patients with diabetes, both mean hemoglobin A1c (HbA1c) and HbA1c variability over time was associated with PN <sup>12</sup>. Most recently, Andersen et al. demonstrated that the rate of HbA1c increase over time affected the development of PN independent of mean HbA1c levels among participants in the Anglo-Danish-Dutch Study of Intensive Treatment of Diabetes in Primary Care (ADDITION) study <sup>13</sup>.

We have previously shown that high-sensitivity cardiac troponin T (hs-cTnT) is associated with incident diabetes in the ARIC cohort <sup>14</sup>, and that non-traditional blood-based biomarkers are associated with major diabetic complications <sup>15-17</sup>. However, there are currently limited data on the association of non-traditional biomarkers with PN in the diabetic population, and there are minimal reports about the association of any laboratory measures with PN in non-diabetic patients, particularly in a community-based population.

## 5. Main Hypothesis/Study Questions:

The aim of this study is to assess the association of traditional and non-traditional risk factors - particularly blood-based biomarkers - with PN in diabetic and non-diabetic patients in the ARIC study. Because hs-cTnT and N-terminal prohormone brain natriuretic peptide (NTproBNP) have been shown to distinguish between high diabetes risk *versus* low diabetes risk

for cardiovascular disease risk  $^{16}$ ; elevated high-sensitivity C-reactive protein (hs-CRP) is associated with increased risk of diabetes and CVD  $^{15}$ ; and  $\beta$ -2 microglobulin, creatinine-based estimated glomerular filtration rate (eGFR), and cystatin C-based eGFR are strongly associated with CVD and long-term complications among patients with diabetes  $^{17}$ ; we anticipate that some or all of these biomarkers will be associated with PN. We also predict that there may be a difference in risk factors associated with PN among diabetic *versus* non-diabetic participants.

# 6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of interest with specific reference to the time of their collection, summary of data analysis, and any anticipated methodologic limitations or challenges if present).

## Inclusion/Exclusion

We will include all black or white ARIC participants who underwent peripheral neuropathy testing at visit 6 and had nontraditional biomarkers (hs-cTnT, pro-BNP, hs-CRP,  $\beta$ -2 microglobulin, creatinine-based eGFR, and cystatin C-based eGFR) measured at ARIC visits 2, 4, and 5. Participants with self-reported ethnicities other than black or white and those with missing PN or biomarker data will be excluded.

## Exposures of Interest:

Traditional exposures of interest will include sociodemographics (age, race-center, sex, education), physical information (blood pressure, height, weight, body mass index [BMI], waist circumference), lifestyle (smoking status/amount, alcohol consumption), diabetes (presence/absence, duration, insulin-dependency), prevalent cardiovascular disease (CVD) (prior history of coronary heart disease, heart failure, and/or stroke), prevalent peripheral artery disease, clinical variables (LDL-c, HDL-c, triglycerides, systolic blood pressure), prevalent thyroid disease (TSH levels, thyroid medications), prevalent liver disease (AST, ALT, GGT), prevalent cancer, and traditional markers of hyperglycemia (fasting glucose, HbA1c [assessed as visit 1 baseline and as rate of increase over time]).

The nontraditional biomarkers we plan to study include hs-cTnT, pro-BNP, hs-CRP,  $\beta$ -2 microglobulin, creatinine-based eGFR, cystatin C-based eGFR, urine-to-creatinine ratio, fructosamine, glycated albumin, 1,5-anhydroglucitol, and galectin-3. Each of these biomarkers was measured in ARIC participants at visits 2, 4, and 5. The assays used to measure these biomarkers have been previously described in detail  $^{18}$  and have been applied to multiple different populations including the ARIC cohort  $^{15-17,19-22}$ .

#### Outcomes:

The primary outcome of interest is the presence of PN, which was assessed at ARIC visit 6. Peripheral neuropathy data was collected via Semmes-Weinstein 10 g monofilament testing of four sites on each foot: the hallux, the first metatarsal head, and the third metatarsal head, and the fifth metatarsal head. Each site was tested three times by certified technicians and modeled after the NHANES protocol <sup>23</sup>. If two of three responses for a site were incorrect or indeterminate, the response was considered insensate at that site. Peripheral neuropathy was defined as having at least one insensate site.

The initial PN testing was performed using the AliMed reusable nylon Semmes-Weinstein Monofilament, 5.07 instrument. There was a change in protocol to a disposable monofilament instrument (Medical Monofilaments used with a permanent "monogripper"

handle) mid-way through visit 6 because the original instrument was discontinued by the manufacturer. The effect of this change was assessed in an 80-participant crossover study (20 participants from each site), where participants underwent standard PN testing as well as 2 additional rounds of testing (one with each instrument). There was no significant difference in the incidence of PN diagnosis with the original monofilament instrument compared to the new instrument.

## Analysis Plan:

This analysis will be a cross-sectional analysis examining the association of traditional and non-traditional risk factors with PN at visit 6. Univariate and multivariable logistic regression modeling will be used to assess the association between each of the biomarkers and the presence of PN. We will use a multi-staged approach to assess the association of various risk factors with PN. Model 1 will be a crude (unadjusted) model. Model 2 will adjust for sociodemographic, physical, and lifestyle variables. Model 3 will adjust for diabetes, CVD, and clinical variables. Model 4 will include HbA1c and each of the non-traditional biomarkers of interest. Biomarker values will be measured as both mean values overall (visits 2, 4, and 5) as well as biomarker value change over time (slope between visit 2, 4, and 5).

Model discrimination will be assessed using receiver operating characteristic (ROC) curves. We will evaluate whether the addition of each of the biomarkers improves the accuracy of Model 4+biomarkers compared to Model 4 with HbA1c alone using a Wald test of the coefficient and a comparison of the C-statistic before *vs.* after addition of each biomarker. We will also calculate the net reclassification improvement <sup>24</sup> to assess whether the addition of nontraditional biomarkers improves the model's strength of association with PN above traditional risk factors.

In addition, we will conduct sensitivity analyses by stratifying the study sample into key clinical subgroups to assess whether the associations identified above are consistent for participants with diabetes *versus* those without diabetes. Specifically, we will analyze the interaction between any significant biomarker-PN associations identified in Model 5 according to diabetes status using the likelihood ratio test.

## Limitations:

Limitations to our study include the lack of monofilament testing and PN assessment at ARIC visits prior to visit 6, which means our study design is not truly prospective because we cannot exclude prevalent PN at earlier time points. Our analysis will identify factors associated with the presence of PN; whether these factors will be predictive of PN would require a prospectively collected cohort with regular PN assessments.

We may also have limited power to evaluate associations in subgroups of interest (i.e. age, sex, race-center, history of CVD), and we do not currently have arrangements to validate our final model in an external cohort. We will explore the possibility of validating any associations that we identify in a clinical cohort of diabetic patients enrolled in cohorts through Johns Hopkins University School of Medicine, or possibly using NHANES data depending on the availability of data for identified covariates.

| wi<br>an<br>(T)                                                        | th a valu<br>alysis RI<br>his file IC                                         | e RES_C<br>ES_DNA<br>CTDER ha                                             | OTH = "CVI<br>= "CVD Reas been distr                                                           | the file ICTDE<br>D Research" for<br>search" would<br>ibuted to ARIC<br>related to stored                                                  | r non-Di<br>be used<br>PIs, and                                               | NA a<br>?X<br>conta                   | nalys<br>X Y<br>ins                      | is, and fo                                                                       | or DNA                                                                     |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 8.a. W                                                                 | ill the DN                                                                    | NA data l                                                                 | be used in tl                                                                                  | nis manuscript?                                                                                                                            | ? Y                                                                           | es _                                  | _X_                                      | _ No                                                                             |                                                                            |
| Ce                                                                     | enter mus                                                                     | st be used                                                                | d, or the file                                                                                 | either DNA dat<br>ICTDER03 m<br>NA"? Yes                                                                                                   | ust be us                                                                     | sed to                                |                                          |                                                                                  |                                                                            |
| Stu<br>pre<br>AR                                                       | dy manu<br>viously a<br>IC Invest                                             | script pr<br>pproved<br>igators ha                                        | oposals and<br>manuscript<br>ave access to                                                     | ipt proposal hat has found no of proposals eith the publications nc.edu/ARIC/se                                                            | overlap l<br>er publis<br>s lists un                                          | <b>betwe</b><br><b>shed</b><br>der th | een th<br>or sti                         | is propo<br>ll in activ                                                          | sal and<br>ve status.                                                      |
|                                                                        | _X Ye                                                                         | s                                                                         | No                                                                                             |                                                                                                                                            |                                                                               |                                       |                                          |                                                                                  |                                                                            |
| contact                                                                |                                                                               |                                                                           |                                                                                                | script proposal<br>als for commen                                                                                                          |                                                                               | •                                     |                                          |                                                                                  | couraged to                                                                |
| outcom<br>highly send pro<br>Proposa<br>cardiov<br>proposa<br>project, | ne. Manus<br>sensitive<br>oduct bion<br>al #2207 (<br>vascular e<br>ed study. | cript Propassay and narkers in (Associat vents, and Dr. Selvin has extern | posal #1968<br>incident dia<br>association<br>ions of C-real<br>mortality) a<br>n is the senio | posals in ARIC (The association abetes), Manuscrawith diabetes and active protein owner the most closer investigator for ence with the use | of cardi<br>ript Prope<br>nd diabet<br>er six ye<br>sely relat<br>or all thre | ac troosal # tes-re ears w ed ma      | pponing 3158 lated with in anusciplects, | n T meason<br>(Advance<br>traits), and<br>cident dia<br>ript propo-<br>as well a | ured by a ed glycation ad Manuscript abetes, osals with the as the current |
|                                                                        |                                                                               |                                                                           | proposal ass<br>_X_ Yes                                                                        | sociated with an<br>No                                                                                                                     | ny ARIC                                                                       | anci                                  | illary                                   | studies (                                                                        | or use any                                                                 |
|                                                                        | B                                                                             | . primar<br>. primar                                                      | ily the resul<br>ily based on                                                                  | t of an ancillar<br>ARIC data wit<br>st number(s)* _                                                                                       | th ancilla                                                                    | ary d                                 | ata p                                    | laying a                                                                         | minor role                                                                 |

<sup>\*</sup>ancillary studies are listed by number at <a href="http://www.cscc.unc.edu/aric/forms/">http://www.cscc.unc.edu/aric/forms/</a>

- 12a. Manuscript preparation is expected to be completed in one to three years. If a manuscript is not submitted for ARIC review at the end of the 3-years from the date of the approval, the manuscript proposal will expire.
- 12b. The NIH instituted a Public Access Policy in April, 2008 which ensures that the public has access to the published results of NIH funded research. It is your responsibility to upload manuscripts to PubMed Central whenever the journal does not and be in compliance with this policy. Four files about the public access policy from <a href="http://publicaccess.nih.gov/">http://publicaccess.nih.gov/</a> are posted in <a href="http://publicaccess.nih.gov/submit\_process\_journals.htm">http://publicaccess.nih.gov/submit\_process\_journals.htm</a> shows you which journals automatically upload articles to PubMed central.
- 13. Per Data Use Agreement Addendum, approved manuscripts using CMS data shall be submitted by the Coordinating Center to CMS for informational purposes prior to publication. Approved manuscripts should be sent to Pingping Wu at CC, at <a href="mailto:pingping\_wu@unc.edu">pingping\_wu@unc.edu</a>. I will be using CMS data in my manuscript \_\_\_\_\_ Yes \_\_\_\_ No.

#### References

- 1. Martyn CN, Hughes RA. Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatry 1997;62:310-8.
- 2. Anonymous Chronic symmetric symptomatic polyneuropathy in the elderly: a field screening investigation in two Italian regions. I. Prevalence and general characteristics of the sample. Italian General Practitioner Study Group (IGPSG). Neurology 1995;45:1832-6.
- 3. Maser RE, Steenkiste AR, Dorman JS, et al. Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes 1989;38:1456-61.
- 4. Watson JC, Dyck PJ. Peripheral Neuropathy: A Practical Approach to Diagnosis and Symptom Management. Mayo Clin Proc 2015;90:940-51.
- 5. Iqbal Z, Azmi S, Yadav R, et al. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin Ther 2018;40:828-49.
- 6. Hicks CW, Selvarajah S, Mathioudakis N, et al. Burden of Infected Diabetic Foot Ulcers on Hospital Admissions and Costs. Ann Vasc Surg 2016;33:149-58.
- 7. Schaefer C, Mann R, Sadosky A, et al. Health status, function, productivity, and costs among individuals with idiopathic painful peripheral neuropathy with small fiber involvement in the United States: results from a retrospective chart review and cross-sectional survey. J Med Econ 2014:17:394-407.
- 8. Sadosky A, Mardekian J, Parsons B, Hopps M, Bienen EJ, Markman J. Healthcare utilization and costs in diabetes relative to the clinical spectrum of painful diabetic peripheral neuropathy. J Diabetes Complications 2015;29:212-7.
- 9. Deli G, Bosnyak E, Pusch G, Komoly S, Feher G. Diabetic neuropathies: diagnosis and management. Neuroendocrinology 2013;98:267-80.
- 10. Wensley F, Kerry C, Rayman G. Increased risk of hospital-acquired foot ulcers in people with diabetes: large prospective study and implications for practice. BMJ Open Diab Res Care 2018;6:e00510.

- 11. Qureshi MS, Iqbal M, Zahoor S, Ali J, Javed MU. Ambulatory screening of diabetic neuropathy and predictors of its severity in outpatient settings. J Endocrinol Invest 2017;40:425-30
- 12. Su JB, Zhao LH, Zhang XL, et al. HbA1c variability and diabetic peripheral neuropathy in type 2 diabetic patients. Cardiovasc Diabetol 2018;17:47,018-0693-0.
- 13. Andersen ST, Witte DR, Andersen H, et al. Risk-Factor Trajectories Preceding Diabetic Polyneuropathy: ADDITION-Denmark. Diabetes Care 2018; 2018 Jul 9 [Epub ahead of print].
- 14. Whelton SP, McEvoy JW, Lazo M, Coresh J, Ballantyne CM, Selvin E. High-Sensitivity Cardiac Troponin T (hs-cTnT) as a Predictor of Incident Diabetes in the Atherosclerosis Risk in Communities Study. Diabetes Care 2017;40:261-9.
- 15. Parrinello CM, Lutsey PL, Ballantyne CM, Folsom AR, Pankow JS, Selvin E. Six-year change in high-sensitivity C-reactive protein and risk of diabetes, cardiovascular disease, and mortality. Am Heart J 2015;170:380-9.
- 16. Gori M, Gupta DK, Claggett B, et al. Natriuretic Peptide and High-Sensitivity Troponin for Cardiovascular Risk Prediction in Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 2016;39:677-85.
- 17. Parrinello CM, Matsushita K, Woodward M, Wagenknecht LE, Coresh J, Selvin E. Risk prediction of major complications in individuals with diabetes: the Atherosclerosis Risk in Communities Study. Diabetes Obes Metab 2016;18:899-906.
- 18. Saunders JT, Nambi V, de Lemos JA, et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 2011;123:1367-76.
- 19. Pokharel Y, Sun W, Villareal DT, et al. Association between high-sensitivity troponin T and cardiovascular risk in individuals with and without metabolic syndrome: The ARIC study. Eur J Prev Cardiol 2017;24:628-38.
- 20. Liang M, McEvoy JW, Chen Y, Sharrett AR, Selvin E. Association of a Biomarker of Glucose Peaks, 1,5-Anhydroglucitol, With Subclinical Cardiovascular Disease. Diabetes Care 2016;39:1752-9.
- 21. McEvoy JW, Chen Y, Halushka MK, et al. Galectin-3 and Risk of Heart Failure and Death in Blacks and Whites. J Am Heart Assoc 2016;5:10.1161/JAHA.115.003079.
- 22. Selvin E, Rawlings AM, Grams M, et al. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol 2014;2:279-88.
- 23. National Health and Nutrition Examination Survey 2003-2004 Data Documentation, Codebook, and Frequencies: Lower Extremity Disease Peripheral Neuropathy (LEXPN\_C). <a href="https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/LEXPN\_C.htm">https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/LEXPN\_C.htm</a>. Updated 2005. Last accessed 8/1/2018.
- 24. Kerr KF, Wang Z, Janes H, McClelland RL, Psaty BM, Pepe MS. Net reclassification indices for evaluating risk prediction instruments: a critical review. Epidemiology 2014;25:114-21.